2

QuillAudits

Audit Report

September, 2020

Contents

INTRODUCTION 01
AUDIT GOALS 02
SECURITY 03
MANUAL AUDIT 04
AUTOMATED AUDIT 09
UNIT TESTS 18

DISCLAIMER

SUMMARY

Introduction

This Audit Report highlights the overall security of Momentum Smart
Contract. With this report, we have tried to ensure the reliability of their
smart contract by complete assessment of their system’s architecture and
the smart contract codebase.

Auditing Approach and Methodologies applied

The Quillhash team has performed thorough testing of the project starting
with analysing the code design patterns in which we reviewed the smart
contract architecture to ensure it is structured and safe use of third party
smart contracts and libraries.

Our team then performed a formal line by line inspection of the Smart
Contract to find any potential issue like race conditions, transaction-ordering
dependence, timestamp dependence, and denial of service attacks.

In the Unit testing Phase, we coded/conducted Custom unit tests written for
each function in the contract to verify that each function works as expected.
In Automated Testing, We tested the Smart Contract with our in-house
developed tools to identify vulnerabilities and security flaws.

The code was tested in collaboration of our multiple team members and this
included -

» Testing the functionality of the Smart Contract to determine proper logic
has been followed throughout the process.

» Analysing the complexity of the code by thorough, manual review of the
code, line-by-line.

» Deploying the code on testnet using multiple clients to run live tests

» Analysing failure preparations to check how the Smart Contract performs
in case of bugs and vulnerabilities.

» Checking whether all the libraries used in the code are on the latest version.

» Analysing the security of the on-chain data.

I

Audit Details

Project Name: Momentum

Website/Etherscan Code (Mainnet): Ox9a7a4cl4la3bcceda3le42c1192ac6add35069b4
Website/Etherscan Code (Kovan): Ox696F93E6521a1097155790562E2f9ce33f445219
Languages: Solidity (Smart contract), Javascript (Unit Testing)

Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint,

VScode, Securify, Mythril, Contract Library, Slither

The Contracts use 6 standard OpenZeppelin contract files, namely:
SafeMath.sol

Context.sol

Address.sol

IERC20.s0l

Ownable.sol

ERC20.s0ol

The contract code was an exact match with OpenZeppelin’s v3.1.0. And
therefore can be labelled as well audited and tested contracts. Any non severe
warning found during automated audit of these contracts will be of low
concern.

Audit Goals

The focus of the audit was to verify that the smart contract system is secure,
resilient and working according to its specifications. The audit activities can
be grouped in the following three categories:

Security
|dentifying security related issues within each contract and the system of
contracts.

Sound Architecture
Evaluation of the architecture of this system through the lens of established
smart contract best practices and general software best practices.

Code Correctness and Quality

A full review of the contract source code. The primary areas of focus include:
» Correctness » Sections of code with high complexity
» Readability » Quantity and quality of test coverage

I

https://etherscan.io/address/0x9a7a4c141a3bcce4a31e42c1192ac6add35069b4
https://example.cohttps://kovan.etherscan.io/address/0x696f93e6521a1097155790562e2f9ce33f445219m
https://github.com/OpenZeppelin/openzeppelin-contracts/releases/tag/v3.1.0

Security

Every issue in this report was assigned a severity level from the following:

High severity issues

They will bring problems and should be fixed.

Medium severity issues

They could potentially bring problems and should

eventually be fixed.

Low severity issues

They are minor details and warnings that can remain unfixed but would be
better fixed at some point in the future.

Number of issues per severity

Low Mediu High
Open 8 5 (o)
Closed (o) 0 (o)

Manual Audit

For this section the code was tested/read line by line by our developers. We
also used Remix IDE’s JavaScript VM and Kovan networks to test the contract
functionality.

Low Level Severity Issues

1. The Momentum Contract uses ABDKMath64x64.sol library for signed 64
64-bit fixed point numbers. It has been recognized as a fixed point library in
an OpenZepelin post. But they also point towards the weird licensing used
by the library:

* ABDKMath64x64 2 ,by ABDK 2 .Smart contract library of mathematical functions operating with
signed 64.64-bit fixed point numbers. | Weird license.

Github also recognizes the LICENSE as BSD 4-Clause "Original” or "Old"
License.

master ~ abdk-libraries-solidity / LICENSE.md Go to file

@ abdk-consulting/abdk-fibraries-solidity is licensed under the Permissions Limitations Conditions
BSD 4-Clause "Original” or "Old" License
-+ Commercial use * Liability (D License and copyright notice

ive license simiiar to the BSD 3-Clause License, but with an “advertising clause™ that requires an + Modification x Warranty
source in all advertising material ~ Distribution

This iz not legal advice. Learn more about repository Ncenses

Furthermore there were two closed issues on the github of the library
stating concerns related to the Library’s LICENSE by the community:

Issuel: https://github.com/abdk-consulting/abdk-libraries-solidity/issues/6
Issue2: https://github.com/abdk-consulting/abdk-libraries-solidity/issues/9

There is no suggested fix for this. Just a warning which should be explicit
during the audit

I

https://forum.openzeppelin.com/t/list-of-solidity-libraries-in-the-wild/2250
https://github.com/abdk-consulting/abdk-libraries-solidity/blob/master/LICENSE.md
https://github.com/abdk-consulting/abdk-libraries-solidity/issues/6https://github.com/abdk-consulting/abdk-libraries-solidity/issues/6
https://github.com/abdk-consulting/abdk-libraries-solidity/issues/9

2. Variable names are not very intuitive and therefore make the code hard to
understand. Since, Solidity code is made public this concern cannot be
ignored. Below, we will discuss some occurrences where this was noticed:

8 SMweight;
128 LMweightEx;

5 LMweightCo;

Here SMweight should be replaced with shortMomentumWeight. Similarly
LMweightEx and LMweightCo are not intuitive for readers to be differentiated
as heavier or lighter from the variable names used.

Here LMweightEx is of type uint256, which is being used to compute
LMweightEx which is int128, the variable names should be updated to make
this assignment more readable.

SMweight = Math.divu(_ shortMomentumWeight, factor
LMweightEx = Math. u(LMweightEx, factor);

LH”FthTCO Math. u1 LHVPthtCO detOIJ
Bad function name for getTransferFee. From the name of the function it
looks like a simple getter function, but it is also used to update values of
longMomentum and shortMomentum.

etTransferFee(uint256 amount256,
amount Math.fromUInt(amount256);

LongMomentum = newLongMomentum;
shortMomentum newShortMomentum;

3. Visibility of the variables mentioned in the below screenshot should be
explicitly specified.

I ERC20, Ownable {
28 shortMomentum;
128 longMomentum;
128 SMweight;
128 LMweightEx;

128 LMweightCo;

4. VModularity of the destabilizing function can be improved. Similar
calculations are performed twice in the same function:

> Math.mul(amount, Math.div(Math.fromUInt(1), Math.fromUInt(133)));
It is recommended to create an internal function for it.

getDestabilizingTransferFee(int128 amount, int128 newRange, int128

(newRange Math.div(newLongMomentum, Math.fromUInt(50))) {
Math.mul (amount, Math.div(Math.fromUInt(1), Math.fromUInt(133))):
I
L

28 proportion = Math.div(newRange, newLongMomentum);
8 rate = Math.add(Math 1t(1), Math.ln(Math.mul(proportion, Mg
Math.mul(amount, Math.div(rate, Math.fromUInt(133)));

5. Natspecs should be used to improve code readability.

6. Solidity integer division might truncate. As a result, performing
multiplication before division might reduce precision.

7. The pragama versions used within these contracts are too recent and are
not locked as well. Consider using version 0.5.11 for deploying the contracts.
This change will affect contract code as well.

8. Individual contracts use different pragma versions. Different versions of
Solidity is used in:
Version used#’>=0.6.12"10.5.0/|]70.6.0', "*0.6.0', "*0.6.2"]
* 70.6.0 (SafeMath.sol#3)
e "0.6.2 (Address.sol#3)
* 70.6.0 (IERC20.s0l#3)
* “0.5.0/|70.6.0 (ABDKMath64x64.50|#5)
* 70.6.0 (Ownable.sol#3)
* “0.6.0 (Context.sol#3)
* >=0.6.12 (Momentum.sol#2)
* 70.6.0 (ERC20.s0l#3)

I

https://solidity.readthedocs.io/en/v0.5.3/style-guide.html#natspec

Medium Level Severity Issues

1. Unnecessary function overrides of allowance, increaseAllowance,
decreaseAllowance and _approve function with no functionality addition
was observed. All these functions are already defined within ERC20.sol.

55 owner,
>s[owner] [spender];

iress spender, uint256 addedValue))VE
spender, allowances[m ender()][spender].add

ce(address spender, uint256 subtractedValue)
(), spender, allowances[ms der()][spender].sub

_ owner, address spender, uint256 amount) 1
(own = address(0), "ERC20: approve from the zero address");
(spender != address(0), "ERC20: approve to the zero address");

allowances[owner] [spender] = amount;
| al (owner, spender, amount);

2. Function modifiers should be changed from public to external on multiple
occurrences. Functions which are not called from within the contracts should
be exposed as external functions to save gas during transaction execution.

6 amount256)

List of functions which should be external:
1. owner()
2. transferOwnership(address)
3. startBurning()
4. transfer(address,uint256)
5. transferFrom(address,address,uint256)
6. allowance(address,address)
7. increaseAllowance(address,uint256)

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol

8. decreaseAllowance(address,uint256)
9. name()

10. symbol()

11. decimals()

12. balanceOf(address)

13. approve(address,uint256)

3. Bool isBurning should be a public variable. It would be helpful for the users
to know if isburning has been enabled.

bool isBurning = false;

4. Momentum contract does not use custom events specific to the contract
functionality. Events should be fired with all state variable updates as good
practise. This makes it easier to build dApps on top of the contract’s using
existing tools.

5. Bad usage of Open Zeppelin's protocol:
Found duplicate declaration of variables within the Momentum contract.
_allowances variable is already declared within ERC20.sol. Moreover, it was
declared as a private variable and therefore was not intended to be used
directly within contracts using openZeppelin’s codebase.

allowances;

This is called state variable shadowing which is highly criticised.
Instead the allowances function should be used within overridden functions.

Wrong usage within Contract:

function transferFrom(address er, address , uint256 t25¢) public override returns (bool) {
burnAndTransfer(sender, recipient, amount256);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount256, "ERC20: transfer amount exceeds allowance"));
return true;

}

Right usage within Contract:

function transferFrom(address ‘er, address t, uint256) public override returns (bool) {
burnAndTransfer(sender, recipient, amount256);
_approve(sender, _msgSender(), allowance(sender, _msgSender()).sub(amount256, "ERC20: transfer amount exceeds allowance”));
return true;

}

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/9f900f6dbad9f254819453438fb2628fda4e9072/contracts/token/ERC20/ERC20.sol#L40
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variable-shadowing

w

High Level Severity Issues

No high level severity issues

Automated Audit

Remix Compiler Warnings

It throws warnings by Solidity’s compiler. If it encounters any errors the
contract cannot be compiled and deployed.

All the warnings correspond to the ABDKMath64x64 library.

Solhint Linting Violations

Solhint is an open-source project for linting solidity code, providing both
security and style guide validations. It integrates seamlessly into most
mainstream IDEs. We used Solhint as a plugin within our VScode for this
analysis. Multiple Linting violations were detected by Solhint, we will cover an
example of each violation in the section below:

Extra spaces found in import statements:
import { ABDKMath64x64 as Math } from "./ABDKMath64x64.sol";

{ABDKMath64x64 as Math} from "./ABDKMath64x64.sol";

Extra spaces found in allowances declaration:
mapping (address => mapping (address => uint256)) allowances;
pping (addre mapping(addre uint256)) allowances;

Extra space found near input arguments:
uint256 initialSupply,
nt256 initialSupply,

uint256 shortMomentum,
nt256 shortMomentum,

Maximum line length exceeded: Keeping lines under the PEP 8
recommendation to a maximum of 79 (or 99) characters helps readers easily
parse the code.

functic

uint256 transferFee = getTransferFee(amount256, shortMomentum, longMomentum);

Mythril

Mythril is a security analysis tool for EVM bytecode. It detects security
vulnerabilities in smart contracts built for Ethereum, Hedera, Quorum, Vechain,
Roostock, Tron and other EVM-compatible blockchains. It uses symbolic
execution, SMT solving and taint analysis to detect a variety of security
vulnerabilities. Mythril was used to analyse the contract code using runtime
Bytecode of the contract. It indicated a possible integer underflow.

Note: this is a possible vulnerability usually thrown with all contracts
containing complex mathematical calculations.

Securify

Securify is a tool that scans Ethereum smart contracts for critical security
vulnerabilities. Securify statically analyzes the EVM code of the smart
contract to infer important semantic information (including control-flow and
data-flow facts) about the contract. It was unable to Audit the Momentum
contracts due to incompatible compiler versions.

Analysis failed!

Securlfy was not able to analyse parts of the code.

Contracts that have not been analyzed are highlighted in the contract list on the left and are greyed out
In the coda viewer.

Contract Library

Contract-library contains the most complete, high-level decompiled
representation of all Ethereum smart contracts, with security analyses
applied to these in real time.

We performed analysis using contract Library on the mainnet address of the
Momentum contract: Ox9a7a4cl14la3bcced4a3dled2cl192ac6add35069b4

Analysis summary can be accessed here:
https://contract-library.com/contracts/Ethereum/0Ox9a7a4cl41a3bcceda3led2cl192ac6add35069b4

Also the data metrics of contracts deployed on mainnet can be accessed
here: https://amberdata.io/addresses/0x9a7a4cl41a3bccedaldled2c1192ac6add35069b4/metrics

It did not return any issue during the analysis.

Slither

Slither, an open-source static analysis framework. This tool provides rich
information about

Ethereum smart contracts and has the critical properties. While Slither is
built as a security-oriented static analysis framework, it is also used to
enhance the user’s understanding of smart contracts, assist in code reviews,
and detect missing optimizations.

All the notable issues of this analysis have already been considered above.

momentum git:(audit) slither .
'npx truffle@5.1.39 compile --all' running (use --truffle-version truffl x.x to use specific version)

Compiling your contracts

fomentum.sol
wnable.sol
> Compiling ./contracts/SafeMath.sol
> Compilation warnings encountered:
/home/rails/work/audit/momentum/momentum/contracts/ABDKMath64x64.sol: Warning: SPDX license identifier not

provided in source file. Before publishing, consider adding a comment containing "SPDX-License-ldentifier: <SPDX-License>"
to each source file. Use "SPDX-License-Identifier: UNLICENSED" for non-open-source code. Please see httg ¢

more information.

/home/rails/work/audit/momentum/momentum/contracts/ABDKMath64x6 :16:3: Warning: Documentation tag on
non-public state variables will be disallowed in 0.7.0. You will need to use the @dev tag explicitly.

https://etherscan.io/address/0x9a7a4c141a3bcce4a31e42c1192ac6add35069b4
https://contract-library.com/contracts/Ethereum/0x9a7a4c141a3bcce4a31e42c1192ac6add35069b4
https://amberdata.io/addresses/0x9a7a4c141a3bcce4a31e42c1192ac6add35069b4/metrics

Address._functionCallWithValue(address,bytes,uint256,string) (Address.sol#119-140) uses assembly

- INLINE ASM None (Address.sol#132-135)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
INFO:Detectors:
Different versions of Solidity is used in :

- Version used: [==0.6.12", "*0.5.0||*0.6.0", "0.6.00, ""0.6.2"]

- ™).6.0 (SafeMath.sol#3)

- M).6.2 (Address.sol#3)

- 70.6.0 (IERC20.50l#3)

- 70.5.0/1"0.6.0 (ABDKMath64x64.s0l#5)

= ™0.6.0 (Ownable.sol#3)

- 0.6.0 (Context.sol#3)

- >=(,6.12 (Momentum.sol#2)

- M1.6.0 (ERC20.501#3)
Reference: https:/github.com/crytic/slither/wiki/Detector-Documentation#different-pragma-directives-are-used
INFO:Detectors:
Pragma version™0.6.0 (SafeMath.sol#3) necessitates versions too recent to be trusted. Consider deploying with 0.5.11
Pragma version™0.6.2 (Address.sol#3) necessitates versions too recent to be trusted. Consider deploying with 0.5.11
Pragma version™(0.6.0 (IERC20.s0l#3) necessitates versions too recent to be trusted. Consider deploying with 0.5.11
Pragma version™0.5.0/|0.6.0 (ABDKMath64x64.s0l#5) is too complex
Pragma version™(0.6.0 (Ownable.sol#3) necessitates versions too recent to be trusted. Consider deploying with 0.5.11
Pragma version™0.6.0 (Context.sol#3) necessitates versions too recent to be trusted. Consider deploying with 0.5.11
Pragma version>=0.6.12 (Momentum.sol#2) necessitates versions too recent to be trusted. Consider deploying with 0.5.11
Pragma version™0.6.0 (ERC20.s0l#3) necessitates versions too recent to be trusted. Consider deploying with 0.5.11
Reference: https:/github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Low level call in Address.sendValue(address,uint256) (Address.sol#53-59):

- (success) = recipient.call {value: amount}() (Address.sol#57)
Low level call in Address. functionCallWithValue(address,bytes,uint256,string) (Address.sol#119-140):

- (success,returndata) = target.call {value: weiValue}(data) (Address.sol#123)
Reference: https:/github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls
INFO:Detectors:
Function ABDKMath64x64.log_2(int256) (ABDKMath64x64.50l#366-389) is not in mixedCase
Function ABDKMath64x64.exp 2(int256) (ABDKMath64x64.501#410-550) is not in mixedCase
Constant ABDKMath64x64.MIN 64x64 (ABDKMath64x64.501#19) is not in UPPER_CASE WITH UNDERSCORES
Constant ABDKMath64x64 MAX_64x64 (ABDKMath64x64.s0l#24) is not in UPPER_CASE_WITH_UNDERSCORES
Parameter Momentum.getNewMomentum(int256,int256,int256).SMcopy (Momentum.sol#51) is not in mixedCase
Parameter Momentum.getNewMomentum(int256,int256,int256).LMcopy (Momentum.sol#51) is not in mixedCase
Parameter Momentum.getRangeData(int256,int256,int256,int256).LMcopy (Momentum.sol#58) is not in mixedCase
Parameter Momentum.getRangeData(int256,int256,int256,int256).SMcopy (Momentum.sol#58) is not in mixedCase
Parameter Momentum.getRangeData(int256,int256,int256,int256).LMnew (Momentum.sol#38) is not in mixedCase
Parameter Momentum.getRangeData(int256,int256,int256,int256).SMnew (Momentum.sol#58) is not in mixedCase
Parameter Momentum.getTransferFee(uint256,int256,int256).SMcopy (Momentum.sol#77) is not in mixedCase
Parameter Momentum.getTransferFee(uint256,int256,int256).LMcopy (Momentum.sol#77) is not in mixedCase
Variable Momentum._allowances (Momentum.sol#15) is not in mixedCase
Variable Momentum.SMweight (Momentum.sol#11) is not in mixedCase
Variable Momentum.LMweightEx (Momentum.sol#12) is not in mixedCase
Variable Momentum.LMweightCo (Momentum.sol#13) is not in mixedCase
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions
INFO:Detectors:
ABDKMath64x64.fromInt(int256) (ABDKMath64x64.s01#33-36) uses literals with too many digits:

- require(bool j(x == - (x8000000000000000 && x <= OxTFFFFFFFFFFFFFFF) (ABDKMath64x64.s01#34)
ABDKMath64x64.muli(int256,int256) (ABDKMath64x64.s0l#144-170) uses literals with too many digits:

- require(bool)(y == - OXSFF && y <= 0x1000
0000000) (ABDKMath64x64.s0l#146-147)
ABDKMath64x64.muli(int256,int256) (ABDKMath64x64.s0l#144-170) uses literals with too many digits:

- require(bool)(absoluteResult <= 0x8000) (ABDKMath64x64.501#161-162)
ABDKMath64x64.divi(int256,int256) (ABDKMath64x64.s0l#219-239) uses literals with too many digits:

- require(bool)(absoluteResult <= 0x80000000000000000000000000000000) (ABDKMath64x64.501#233)
ABDKMath64x64.inv(int256) (ABDKMath64x64.501#285-290) uses literals with too many digits:

- result = int256(0x 100000000000000000000000000000000) / x (ABDKMath64x64.501#287)
ABDKMath64x64.gavg(int128,int128) (ABDKMath64x64.501#311-317) uses literals with too many digits:

- require(bool)(m < 0x4000) (ABDKMath64x64.s01#314-315)
ABDKMath64x64.pow(int256,uint256) (ABDKMath64x64.501#327-347) uses literals with too many digits:

- require(bool)(absoluteResult <= 0x80000000000000000000000000000000) (ABDKMath64x64.501#341)
ABDKMath64x64.sqri(int128) (ABDKMath64x64.501#355-358) uses literals with too many digits:

- int128(sqrtu(uint256(x) << 64,0x10000000000000000)) (ABDKMath64x64.501#357)
ABDKMath64x64.1og_2(int256) (ABDKMath64x64.501#366-389) uses literals with too many digits:

- x¢ >= (x10000000000000000 (ABDKMath64x64.501#371)
ABDKMath64x64.1og_2(int256) (ABDKMath64x64.501#366-389) uses literals with too many digits:

- x¢ == (x 100000000 (ABDKMath64x64.501#372)

ABDKMath64x64.log_2(int256) (ABDKMath64x64.50l#366-389) uses literals with too many digits:
- bit = 0x8000000000000000 (ABDKMath64x64.s0l#381)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.sol#410-550) uses literals with too many digits:
- require(bool)(x < 0x400000000000000000) (ABDKMath64x64.s0l#411)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- X < = 0x400000000000000000 (ABDKMath64x64.s0l#413)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- result = 0x80000000000000000000000000000000 (ABDKMath64x64.s0l#415)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0xBOO0000000000000 > 0 (ABDKMath64x64.s0l#417)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x4000000000000000 > 0 (ABDKMath64x64.s0l#419)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x2000000000000000 > 0 (ABDKMath64x64.s0l#421)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x1000000000000000 > 0 (ABDKMath64x64.s0l#423)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x800000000000000 = 0 (ABDKMath64x64.501#425)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x400000000000000 = 0 (ABDKMath64x64.501#427)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x200000000000000 = 0 (ABDKMath64x64.501#429)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x100000000000000 = 0 (ABDKMath64x64.501#431)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x80000000000000 = 0 (ABDKMath64x64.50l#433)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x40000000000000 = 0 (ABDKMath64x64.50l#435)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x20000000000000 = 0 (ABDKMath64x64.s50l#437)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x10000000000000 = 0 (ABDKMath64x64.501#439)

ABDKMath64x64.exp 2(int256) (ABDKMath64x64.50l#410-550) uses literals with too many digits:
- x & 0x8000000000000 = 0 (ABDKMath64x64.s0l#441)

ABDKMath64x64.exp 2(int256) (ABDKMath64x64.50l#410-550) uses literals with too many digits:
- x & 0x4000000000000 = 0 (ABDKMath64x64.s0l#443)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.so0l#410-550) uses literals with too many digits:
- x & 0x2000000000000 > 0 (ABDKMath64x64.s0l#445)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.so0l#410-550) uses literals with too many digits:
- x & 0x1000000000000 > 0 (ABDKMath64x64.s01#447)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x800000000000 > 0 (ABDKMath64x64.s0l#449)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x400000000000 > 0 (ABDKMath64x64.s0l#451)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x200000000000 > 0 (ABDKMath64x64.s0l#453)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x100000000000 > 0 (ABDKMath64x64.s0l#455)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- result = result * Ox100000B1721BCFCY9DOF890EA06911763 == 128 (ABDKMath64x64.501#456)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x80000000000 = 0 (ABDKMath64x64.s0l#457)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- result = result * Ox10000058B90CF IE6D9T7FICA14DBCC1628 >> 128 (ABDKMath64x64.501#458)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x40000000000 = 0 (ABDKMath64x64.s0l#459)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.so0l#410-550) uses literals with too many digits:
- result = result * Ox1000002C5C863B73F016468F6BACSCA2B >> 128 (ABDKMath64x64.501#460)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x20000000000 = 0 (ABDKMath64x64.s0l#461)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- result = result * 0x100000162E430E5A18F6119E3C02282A5 >> 128 (ABDKMath64x64.501#462)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x10000000000 = 0 (ABDKMath64x64.s0l#463)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- result = result * Ox1000000B1721835514B86E6DY6EFD IBFE == 128 (ABDKMath64x64.s0l#464)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- x & 0x8000000000 > 0 (ABDKMath64x64.s01#465)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:
- result = result * 0x100000058B90C0B48C6BESDF846CSB2EF == 128 (ABDKMath64x64.501#466)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- x & 0x4000000000 = 0 (ABDKMath64x64.501#467)
ABDKMath64x64.exp 2(int256) (ABDKMath64x64.50l#410-550) uses literals with too many digits:

- result = result * 0x10000002C5C8601CC6BYEY4213CT72737A == 128 (ABDK Math64x64.50l#468)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- x & 0x2000000000 = 0 (ABDKMath64x64.501#469)
ABDKMath64x64.exp 2(int256) (ABDKMath64x64.50l#410-550) uses literals with too many digits:

- result = result * 0x1000000162E42FFF037DF38AA2B219F06 >> 128 (ABDKMath64x64.s50l#470)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- x & 0x1000000000 = 0 (ABDKMath64x64.501#471)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x10000000B17217FBA9CTI9AASE19F44F9 == 128 (ABDKMath64x64.501#472)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- x & 0xB00000000 = 0 (ABDKMath64x64 s0l#473)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x1000000058B9OBFCDEESACD3CICEDCR23 == 128 (ABDKMath64x64.50l#474)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- x & 0x400000000 = 0 (ABDKMath64x64 s0l#475)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x100000002C5C85FE31F35A6A30DA1BES0 == 128 (ABDKMath64x64.50l#476)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- x & 0x200000000 = 0 (ABDKMath64x64 .s0l#477)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x10000000162E42FF0999CE3541B9FFFCF == 128 (ABDKMath64x64.501#478)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- x & 0x100000000 = 0 (ABDKMath64x64 .s0l#479)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x100000000B1721 7F80F4EF5AADDA45554 == 128 (ABDKMath64x64.501#480)
ABDKMath64x64.exp 2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- x & 0xB0000000 = 0 (ABDKMath64x64.s0l#481)
ABDKMath64x64.exp 2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * Ox10000000058B90BFBF8479BDSARIB51AD == 128 (ABDKMath64x64.50l#482)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- x & 0x40000000 = 0 (ABDKMath64x64.s0l#483)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x1000000002C5C85FDFR4BD62AE30AT4CC == 128 (ABDKMath64x64 .s0l#484)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- x & 0x20000000 = 0 (ABDKMath64x64.50l#485)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * Ox100000000162E42FEFB2FED257559BDAA => 128 (ABDKMath64x64.s01#486)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- x & 0x10000000 = 0 (ABDKMath64x64.501#487)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * Ox1000000000B17217F7D5A7716BBA4A9AE >> 128 (ABDKMath64x64.s01#488)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- x & 0x8000000 > 0 (ABDKMath64x64.s0l#489)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s01#410-550) uses literals with too many digits:

- result = result * Ox100000000058B9OBFBESDDBACSE109CCE == 128 (ABDKMath64x64.501#490)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- x & 0x4000000 > 0 (ABDKMath64x64.s0l#491)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * Ox10000000002C5CR85FDF4B15DEGF 17EBOD == 128 (ABDKMath64x64.501#492)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- x & 0x2000000 > 0 (ABDKMath64x64.s0l#493)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * Ox1000000000162E42FEFA494F 1478FDEO0S >> 128 (ABDKMath64x64.501#494)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- x & 0x1000000 > 0 (ABDKMath64x64.s0l#495)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * Ox10000000000B17217F7D20CF927C8E94C == 128 (ABDKMath64x64.501#496)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.so0l#410-550) uses literals with too many digits:

- x & 0x800000 > 0 (ABDKMath64x64.501#497)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * Ox1000000000058B90BFBERF71CB4E4B33D == 128 (ABDKMath64x64.501#498)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.so0l#410-550) uses literals with too many digits:

- x & 0x400000 > 0 (ABDKMath64x64.501#499)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * Ox100000000002C5C85FDF477B662B26945 == 128 (ABDKMath64x64.s0l#500)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.so0l#410-550) uses literals with too many digits:

- x & 0x200000 > 0 (ABDKMath64x64.s0l#501)

ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x10000000000162E42FEFA3AE53369388C >> 128 (ABDK Math64x64.501#502)
ABDKMath64x64.exp 2(int256) (ABDKMath64x64.50l#410-550) uses literals with too many digits:

- x & 0x100000 = 0 (ABDKMath64x64 s0l#503)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x100000000000B17217F7D1D351A389D40 >> 128 (ABDK Math64x64.501#504)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x10000000000058B90BFBERESB2D3D4EDE == 128 (ABDKMath64x64.501#506)
ABDKMath64x64.exp 2(int256) (ABDKMath64x64.50l#410-550) uses literals with too many digits:

- result = result * Ox1000000000002C5C85FDF4741 BEAGETTE == 128 (ABDKMath64x64.501#508)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * Ox100000000000162E42FEFA39FE95583C2 >> 128 (ABDKMath64x64.50l#510)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x1000000000000B17217F7D1CFB72B45E] >> 128 (ABDKMath64x64.501#512)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x100000000000058B9OBFBESETCC35C3F0 == 128 (ABDKMath64x64.50l#514)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x10000000000002C5C85FDF473E242EA38 >> 128 (ABDK Math64x64.501#516)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x1000000000000162E42FEFA39F02B772C == 128 (ABDKMath64x64.501#518)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x10000000000000B17217F7DICFTDE3CI1A == 128 (ABDKMath64x64.50l#520)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x1000000000000058BOOBFBEBE7TBDCBE2E >> 128 (ABDKMath64x64.50l#522)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x100000000000002C5C85FDF473DEARTIF == 128 (ABDKMath64x64.501#524)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x10000000000000162E42FEFA39EF44D91 == 128 (ABDKMath64x64.501#526)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * Ox100000000000000B17217F7D1CF79E949 >> 128 (ABDKMath64x64.5014528)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x10000000000000058B90BFBESETBCES44 == 128 (ABDKMath64x64.50l#53()
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x1000000000000002C5C85FDF473DEGECA == 128 (ABDKMath64x64.501#532)
ABDKMath64x64.exp 2(int256) (ABDKMath64x64.50l#410-550) uses literals with too many digits:

- result = result * 0x100000000000000162E42FEFA39EF366F >> 128 (ABDKMath64x64.501#534)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * Ox1000000000000000B17217F7TD1CF79AFA == 128 (ABDKMath64x64.s01#536)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * Ox100000000000000058B9OBFBESETBCD6D == 128 (ABDKMath64x64.501#538)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * Ox10000000000000002C5CRSFDF473DE6B2 == 128 (ABDKMath64x64.s01#540)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * 0x1000000000000000162E42FEFA39EF358 >> 128 (ABDKMath64x64.50l#542)
ABDKMath64x64.exp_2(int256) (ABDKMath64x64.s0l#410-550) uses literals with too many digits:

- result = result * Ox10000000000000000B17217F7D1CF79AB == 128 (ABDKMath64x64.s01#544)
ABDKMath64x64.exp(int1 28) (ABDKMath64x64.501#558-565) uses literals with too many digits:

- require(bool)(x < 0x400000000000000000) (ABDKMath64x64.501#559)
ABDKMath64x64.exp(int] 28) (ABDKMath64x64.501#558-565) uses literals with too many digits:

- x < - 0x400000000000000000 (ABDK Math64x64.s0l#561)
ABDKMath64x64.divuu(uint256,uint256) (ABDKMath64x64.50l#575-614) uses literals with too many digits:

- x¢ == 0x 100000000 (ABDKMath64x64.50l#585)
ABDKMath64x64.powu(uint256,uint256) (ABDKMath64x64.501#624-677) uses literals with too many digits:

- 0x80000000000000000000000000000000 {ABDKMath64x64.s01#625)
ABDKMath64x64.powu(uint256,uint256) (ABDKMath64x64.501#624-677) uses literals with too many digits:

- x¢ == (x100000000000000000000000000000000 (ABDKMath64x64.s01#630)
ABDKMath64x64.powu(uint256,uint256) (ABDKMath64x64.501#624-677) uses literals with too many digits:

- x¢ == (x10000000000000000 (ABDKMath64x64.s01#631)
ABDKMath64x64.powu(uint256,uint256) (ABDKMath64x64.501#624-677) uses literals with too many digits:

- x¢ == 0x 100000000 (ABDKMath64x64.501#632)
ABDKMath64x64.powu(uint256,uint256) (ABDKMath64x64.501#624-677) uses literals with too many digits:

- result = 0x80000000000000000000000000000000 (ABDKMath64x64.s01#643)
ABDKMath64x64.powu(uint256,uint256) (ABDKMath64x64.501#624-677) uses literals with too many digits:

- result == 0x8000 (ABDKMath64x64.s0l#651-652)
ABDKMath64x64.powu(uint256,uint256) (ABDKMath64x64.501#624-677) uses literals with too many digits:

- x == 0x8000 (ABDKMath64x64.501#662-663)
ABDKMath64x64.slitherConstructorConstant Variables() (ABDKMath64x64.sol#15-698) uses literals with too many digits:

- MIN_64x64 = - 0x80000000000000000000000000000000 (ABDKMath64x64.501#19)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits

INFO:Detectors:
owner() should be declared external:

- Ownable.owner() (Ownable.sol#35-37)
transferOwnership(address) should be declared external:

- Ownable.transferOwnership(address) (Ownable.sol#63-67)
startBurning() should be declared external:

- Momentum.startBurning() (Momentum.sol#109-112)
transfer{address,uint256) should be declared external:

- ERC20).transfer(address,uint256) (ERC20,s0l#117-120)

- Momentum.transfer{ address,uint256) (Momentum.sol#125-128)
transferFrom(address,address,uint256) should be declared external:

- ERC20.transferFrom(address,address,uint256) (ERC20.s0l#153-157)

- Momentum.transferFrom(address,address,uint256) (Momentum.sol#130-134)
allowance(address,address) should be declared external:

- Momentum.allowance(address,address) (Momentum.sol#136-138)

- ERC20.allowance(address,address) (ERC20.s0l#125-127)
increaseAllowance{address,uint256) should be declared external:

- Momentum.increaseAllowance(address,uint256) (Momentum.sol#140-143)

- ERC20.increaseAllowance(address,uint256) (ERC20.s0l#171-174)
decreaseAllowance(address,uint256) should be declared external:

- ERC20.decreaseAllowance{address,uint256) (ERC20.s0l#190-193)

- Momentum.decreaseAllowance(address,uint256) (Momentum.sol#145-148)
name() should be declared external:

- ERC20.name() (ERC20.s50l#66-68)
symbol() should be declared external:

- ERC20.symbol() (ERC20.s501#74-76)
decimals() should be declared external:

- ERC20.decimals() (ERC20.501#91-93)
balanceOf{address) should be declared external:

- ERC20.balanceOf{address) (ERC20.s0l#105-107)
approve(address,uint256) should be declared external:

- ERC20.approve(address,uint256) (ERC20.501#136-139)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-could-be-declared-as-external
INFO:Slither:, analyzed (8 contracts with 46 detectors), 166 result(s) found
INFO:Slither:Use https://crytic.io/ to get access to additional detectors and Github integration

Unit Tests

We used open zeppelin’s test-helpers and test-environment to write these
contract test cases and executed them using a combination of truffle,
mocha and chai.

momentum git:(audit) npm test

> @ test /home/rails/work/audit/momentum,/momentum
> npx mocha --exit --recursive test --timeout 12000

Momentum
has a name
has a symbol
has 10 decimals
has long momentum
has short momentum
has an owner (43ms)
total supply
returns the total amount of tokens
balanceOf
when the requested account has no tokens
returns zero
when the requested account has some tokens
returns the total amount of tokens
transfer
when the recipient is not the zero address

when the sender does not have enough balance
| reverts (102ms)
when the sender transfers all balance
| transfers the requested amount (68ms)
| emits a transfer event (38ms)
when the sender transfers zero tokens
| transfers the requested amount (83ms)
| emits a transfer event
when the recipient is the zero address
| reverts
transfer from
when the token owner is not the zero address
when the recipient is not the zero address
when the spender has enough approved balance
when the token owner has enough balance
transfers the requested amount (59ms)
decreases the spender allowance (46ms)
emits a transfer event
emits an approval event (40ms)
when the token owner does not have enough balance
reverts (40ms)
when the spender does not have enough approved balance
when the token owner has enough balance
reverts (38ms)
when the token owner does not have enough balance
reverts
when the recipient is the zero address
| reverts
when the token owner is the zero address
| reverts

approve
when the spender is not the zero address
when the sender has enough balance
| emits an approval event
when there was no approved amount before
approves the requested amount (40ms)
when the spender had an approved amount

approves the requested amount and replaces the previous one
when the sender does not have enough balance
| emits an approval event
when there was no approved amount before
approves the requested amount (42ms)
when the spender had an approved amount
[l approves the requested amount and replaces the previous one (52ms)
when the spender is the zero address
| reverts
get momentum and supply
returns supply
returns initial long momentum
returns initial short momentum
decrease allowance
when the spender is not the zero address
when the sender has enough balance
when there was no approved amount before
reverts
when the spender had an approved amount
emits an approval event
decreases the spender allowance subtracting the requested amount (39ms)
sets the allowance to zero when all allowance is removed
reverts when more than the full allowance is removed
when the sender does not have enough balance
when there was no approved amount before
reverts
when the spender had an approved amount
emits an approval event
decreases the spender allowance subtracting the requested amount (50ms)
sets the allowance to zero when all allowance is removed
reverts when more than the full allowance is removed
when the spender is the zero address
| reverts
increase allowance

when the spender is not the zero address
balance

ee for changing momentum
Supply
vient balance
vent
1ange momentum if amount is less than ~0,3% of lower momentum value
momentum for |
momentum for

momentum for
momentum for

68 passing (9s)

Disclaimer

Quillhash audit is not a security warranty, investment advice, or an
endorsement of the Momentum contract. Securing smart contracts is a
multistep process, therefore running a bug bounty program as a complement
to this audit is strongly recommended.

Summary

Use case of the smart contract is very well designed and Implemented.
Altogether, the code is written and demonstrates effective use of abstraction,
separation of concerns, and modularity. But there are a number of
issues/vulnerabilities to be tackled in the medium level severity and low level
severity, code is readable but can be improved according to the Solidity’s
style guide which is recommended to be fixed before implementing a live
version.

/ Q 448-A EnKay Square, Opposite Cyber Hub,
Gurugram, Harayana, India - 122016

3 audits.quillhash.com

Qu illAudits hello@quillhash.com

